Sp(3) structures on 14-dimensional manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pin Structures on Low–dimensional Manifolds

Pin structures on vector bundles are the natural generalization of Spin structures to the case of nonoriented bundles. Spin(n) is the central Z/2Z extension (or double cover) of SO(n) and Pin−(n) and Pin(n) are two different central extensions of O(n), although they are topologically the same. The obstruction to putting a Spin structure on a bundle ξ (= R → E → B) is w2(ξ) H(B;Z/2Z); for Pin it...

متن کامل

Algebraic Structures on Hyperkähler Manifolds Algebraic Structures on Hyperkähler Manifolds

Let M be a compact hyperkähler manifold. The hy-perkähler structure equips M with a set R of complex structures parametrized by CP 1 , called the set of induced complex structures. It was known previously that induced complex structures are non-algebraic, except may be a countable set. We prove that a countable set of induced complex structures is algebraic, and this set is dense in R. A more g...

متن کامل

Geometric structures on manifolds

This document is a sample prepared to illustrate the use of the American Mathematical Society’s LTEX document class amsbook and publication-specific variants of that class.

متن کامل

Structures on Manifolds � � � � � � � � � � �

This is an electronic edition of the 1980 notes distributed by Princeton University. The text was typed in T E X by Sheila Newbery, who also scanned the figures. Typos have been corrected (and probably others introduced), but otherwise no attempt has been made to update the contents. Genevieve Walsh compiled the index. Numbers on the right margin correspond to the original edition's page number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2013

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2013.02.010